

シーン画像からのタスク実行可能な ロボット動作軌跡の生成 〜検索拡張と拡散モデルの統合〜

Norimichi Ukita Toyota Technological Institute, Japan

1

Code

READ: Retrieval-Enhanced Asymmetric Diffusion for Motion Planning

Takeru Oba, Matthew Walter, and Norimichi Ukita CVPR2024

Task: Motion Prediction from an Image

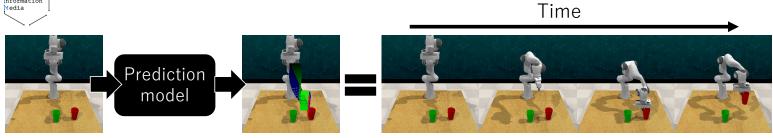


Image at t

Motion from t+1 to T

```
Time: t Predicted Motion

1 [2.3, -1.0, 1.3, 0.6, 0.2, 0.9, 1.0]
[2.2, -0.9, 1.4, 0.6, 0.1, 1.0, 1.0]

\vdots

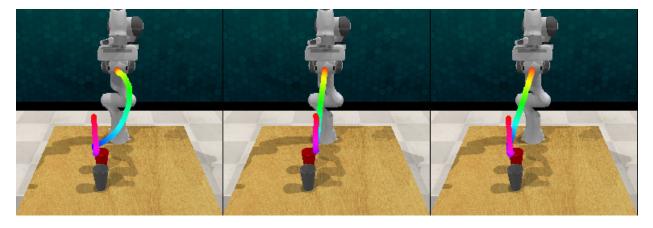
[1.8, -0.9, 2.3, 0.5, 0.1, 1.6, 0.0]

T [1.7, -0.9, 2.3, 0.5, 0.1, 1.7, 0.0]

position angle grasp
```

5

Difficulty



- Multiple motions can accomplish the task
 - Demonstrators' motions are stochastic.

Difficulty in Robot Motion Learning

- Stochasticity
 - Not only one but also several motions can achieve each task.
- Small number of training samples
 - Image generation >> Real robot motion planning
 - Robot motions are collected by manually controlling robots.
- Controllability
 - Complexity in articulated joint control
 - Similar motions can or cannot be achieved due to the limited range of ioint motions.
- High precision
 - Small motion difference may disturb a task.

Difficulty in Robot Motion Learning

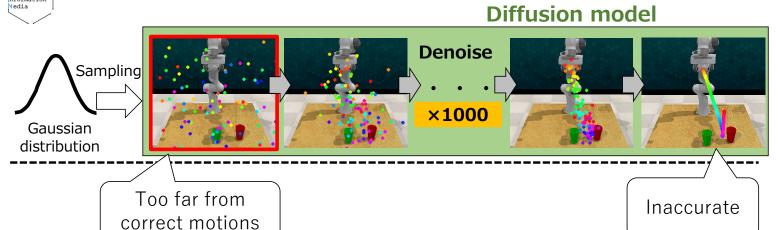
- \Rightarrow Probabilistic models
 - Representing multiple task-achievable motions
- Small number of training samples
- Generative models
 - Successful in-distribution sampling from a limited number of samples
 - Controllability
- Retrieval-based motion planning
 - Motion optimization/refinement from real controllable motions
 - High precision
- High-fidelity motion refinement
 - Refinement in a high-resolution refinement space

Our Solutions for Robot Motion Learning

- Probabilistic models
 - Representing multiple task-achievable motions
- Diffusion models
- Generative models
 - Successful in-distribution sampling from a limited number of samples
 - Diffusion models
- Retrieval-based motion planning
 - Motion optimization/refinement from real controllable motions
- Refining real samples from intermediate diffusion steps
- High-fidelity motion refinement
 - Refinement in a high-resolution refinement space
- High-resolution feature space by asymmetric diffusion

Intelligent

Diffusion Model

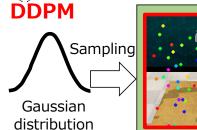


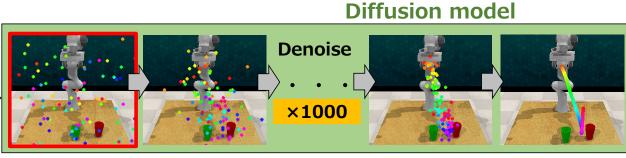
Our Solutions for Robot Motion Learning

- Probabilistic models
 - Representing multiple task-achievable motions
- Diffusion models
- Generative models
 - Successful in-distribution sampling from a limited number of samples
- Diffusion models
- Retrieval-based motion planning
 - Motion optimization/refinement from real controllable motions
- Refining real samples from intermediate diffusion steps
- High-fidelity motion refinement
 - Refinement in a high-resolution refinement space
- High-resolution feature space by asymmetric diffusion

OYOTA TOYOTA BHITHE BOOK OF THE PROPERTY OF

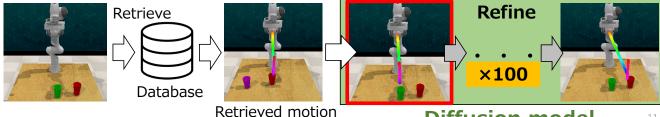
Proposed Method: Refinement from Retrieved Motion





Ours

READ retrieves an initial motion and uses a diffusion model to refine the retrieved motion.



Diffusion model

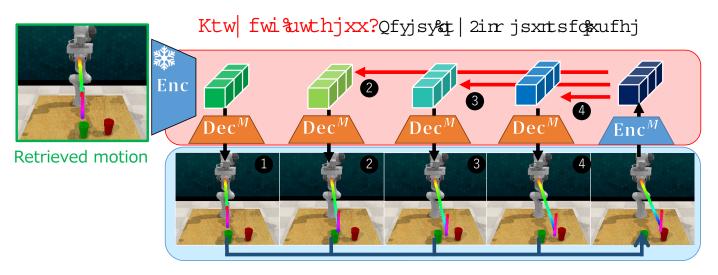
11

Our Solutions for Robot Motion Learning

- Probabilistic models
 - Representing multiple task-achievable motions
- Diffusion models
- Generative models
 - Successful in-distribution sampling from a limited number of samples
- → Diffusion models
- Retrieval-based motion planning
 - Motion optimization/refinement from real controllable motions
- Refining real samples from intermediate diffusion steps
- High-fidelity motion refinement
 - Refinement in a high-resolution refinement space
- High-resolution feature space by asymmetric diffusion

11

Proposed method: Asymmetric Diffusion



Wj{jwxj&uwthjxx?&rwnlrsfc@mnlm2wjxtczyrts&ufhj

12

Experiments

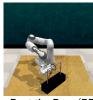
Open Wine (OW)

Bench mark: 12 tasks

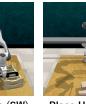
Training: 1000 for each task

Test: 100 for each task **Metrics: Success rate**

Water Plants (WP)



Beat the Buzz (BB)



Stack Wine (SW)

Place Hanger (PH)

Put Rubbish (PR)

Take Plate (TP)

Experimental Results

Task Success rates

		Avg12	PC	RT	PB	OW	CB	PR	SW	PH	WP	BB	PK	TP
no retrieval	Deterministic	72.7	64	74	88	65	85	77	99	39	95	61	35	91
	DDPM [18]	71.9	96	1	44	70	100	96	98	40	84	84	52	98
	VPSDE [44]	66.4	95	3	96	53	99	68	95	48	59	50	38	93
retrieval	VINN [34]	24.8	5	2	2	20	59	2	45	4	71	25	25	38
	DMO-EBM [32]	70.4	89	32	85	61	97	85	74	40	91	46	51	94
	VPSDE+CG [17]	19.5	26	10	5	6	72	6	30	1	51	7	5	15
	R2-Diff [33]	81.0	95	91	99	72	96	98	96	43	90	56	48	89
READ		88.8	96	99	72	88	100	98	97	57	91	86	82	100