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Abstract

We propose a method for estimating the pose of a hu-
man body using its approximate 3D volume (visual hull) ob-
tained in real time from synchronized videos. Our method
can cope with loose-fitting clothing, which hides the human
body and produces non-rigid motions and critical recon-
struction errors, as well as tight-fitting clothing. To fol-
low the shape variations robustly against erratic motions
and the ambiguity between a reconstructed body shape and
its pose, the probabilistic dynamical model of human vol-
umes is learned from training temporal volumes refined by
error correction. The dynamical model of a body pose (joint
angles) is also learned with its corresponding volume. By
comparing the volume model with an input visual hull and
regressing its pose from the pose model, pose estimation
can be realized. In our method, this is improved by double
volume comparison: 1) comparison in a low-dimensional
latent space with probabilistic volume models and 2) com-
parison in an observation volume space using geometric
constrains between a real volume and a visual hull. Com-
parative experiments demonstrate the effectiveness of our
method faster than existing methods.

1. Introduction

With human pose information, a number of real-world
applications can be realized. Such techniques have been
proposed in many studies[1]. To estimate complex dynamic
poses, pose tracking using motion prior and multiview im-
ages is more effective than pose detection from a unidirec-
tional view. Although a number of works using motion have
been proposed (e.g., [2, 3]), pose estimation using multi-
view images has not been studied extensively. This is be-
cause multiview analysis (i.e., 3D reconstruction) requires
a large amount of computational time and might not be ro-
bust against 3D errors. For example, while latest stereo al-
gorithms such as [4] can reconstruct a detailed shape, its

computational cost is expensive. However, recent Shape-
From-Silhouette (SFS) can compute the volume (i.e., visual
hull) of a person moving stably in real time [5, 6].

In most methods using 3D volumes, the pose is estimated
so that the overlap between the reconstructed volume and a
3D human model that consists of simple rigid parts (e.g.,
cylinders) is maximized (e.g., [7, 8]). These methods can
work well under the assumption that each body part is ap-
proximately modeled as a rigid part. This assumption, how-
ever, cannot represent a large variation of non-rigid loose-
fitting clothing.

In [9], the shapes of a skirt and legs are reconstructed si-
multaneously. However, it is very slow (Smin/frame) and
can cope only with simple shape variations (i.e., simple
pose of only almost observable legs). With [10], a body
shape under clothing can be reconstructed. Although the
pose can be estimated from the body shape, 1) a large part of
limb should be observable, 2) deformation of loose-fitting
clothing makes reconstruction difficult, and 3) reconstruc-
tion is very slow (40min/frame) in [10]. On the other hand,
Ukita et al.[11] proposed real-time body-part identification
in the volume of a person who wears loose-fitting clothing.
However, it cannot estimate the pose itself. Furthermore,
it cannot cope with complex shape deformation because its
volume model is simple. As far as we know, no existing al-
gorithm can achieve pose estimation of a human body hid-
den by loose-fitting clothing in complex motion. In this pa-
per, to cope with this kind of difficult motion, we propose
novel pose tracking using temporal volumes and probabilis-
tic human motion dynamics.

2. Related Work

The pose of a human body is modeled by a set of joint
angles. For pose estimation from an image(s), some kind
of shape feature (e.g., boundary line, silhouette, volume)
that expresses a human body shape is extracted. Then the
pose is estimated based on the geometric correspondence
between the body shape and the pose. Prior knowledge of a
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human body (e.g., structure and motion) can improve accu-
racy and robustness of pose estimation. The more detailed
and precise the prior becomes, the more accurate and robust
its estimation result gets. The detailed and precise prior
of the human body can be obtained by a Motion Capture
(MoCap) system. While several kinds of body information
are obtained with MoCap, most works focus on the motion
of the joint angles: motion models with Gaussian mixture
models[12], HMM[13], and autoregressive models[3]. The
motion prior is useful for resolving the short-lasting ambi-
guities between a body shape and its pose.

However, the high dimensionality of the joint angles
(30-60 dimensions) and their erratic motions make it dif-
ficult to represent various motions efficiently and correctly.
Therefore, their motion prior is expressed probabilistically
(e.g., by using HMM/Gaussian) in a lower dimensional
space (e.g., by using PCA). Recently, a series of Gaus-
sian Process Latent Variable Models (GPLVM][14]), which
provides nonlinear probabilistic embedding, is widely used
for motion learning: dynamics representation[15], bidirec-
tional smooth mapping[16], and shared latent structure[17].
This kind of embedding is also useful for modeling high-
dimensional shape features such as silhouettes and volumes
as proposed in [17] and [18], respectively.

Particle filtering is also popular for pose tracking.
Although it can be done in a high-dimensional joint
space by using particle reposition[19] and/or coarse-to-fine
processing[20], it is difficult in a more high-dimensional
space (100-D or more); in our framework, the particle di-
mension is 160-D, in which it is impossible to distribute
particles well. Therefore, the above embedding is useful for
getting feasible dimensional variables.

In general, joint angles are measured by an optical Mo-
Cap system, in which markers are attached on a human
body. The optical MoCap, however, cannot observe the
body if it is hidden by loose-fitting clothing such as a skirt
or dress. Even for such a target, a MoCap with accelerom-
eters and/or geomagnetism magnetism sensors can measure
the joint angles (e.g., off-the-shelf product[21]).

3D shape reconstructed from multiview images can also
improve pose estimation under occlusion as described in
Sec. 1. With 3D comparison, the pose that is ambiguous
in the silhouette is also estimated correctly.

None of the above methods, however, can estimate the
pose of a person who wears significantly deforming loose-
fitting clothing because they assume rigid articulated mo-
tion. To cope with this problem, a regression based ap-
proach is useful. In its learning process, each pose data
is obtained and recorded with its corresponding shape data
(e.g., silhouette/volume). In its estimation process, then,
the pose of an input shape data is inferred from the in-
put by regression. In [22, 17], regression from the 2D sil-
houette is achieved by RVM and shared-structure GPLVM,

respectively. In these methods, efficient and robust shape
features[23] extracted from each silhouette are used for re-
gression. As well as regression from the silhouette, regres-
sion from the volume has been also proposed[24, 18]. In
[24, 18], 3D extension[25] of the above shape feature is em-
ployed as in [26]. This kind of 3D shape representation has
been studied in 3D retrieval; see review[27], for example.
These features are efficient and still robust against noise.
However, none of the previous works can be applied to es-
timating the pose of a person wearing loose-fitting clothing.
This is because ambiguity between the human and clothing
shape and its pose increases significantly due to large defor-
mation of clothing; even if the observable clothing shapes
are the same, the unobservable body poses have a large vari-
ation depending on previous motions.

Furthermore, while SFS is fast and stable, it is not easy to
estimate the pose from the visual hull reconstructed by SFS
even with regression. This is because the visual hull may in-
clude large errors mainly in concave regions of the human
body and clothing. We call these errors phantom volumes.
Note that they change depending not only on the shape of a
target but also on the geometric configuration (location and
orientation) among the target and cameras. This results in
difficulty in volume matching for regression. This is one of
the major problems not only in pose regression but also in
all kinds of pose estimation from the visual hull. The phan-
tom volumes can be refined based on post-processes such as
multi-view photo consistencies (e.g., dense stereo[4] space
carving[28]) and additional restrictions such as silhouette
consistencies and spatio-temporal smoothness (e.g., the de-
formable mesh model[29]). In [30], a template human
model is used for more reliable mesh deformation. These
methods, however, require a large amount of computational
cost for 3D reconstruction (e.g., one minute or more).

3. Basic Scheme for Probabilistic Volume and
Pose Tracking

In our offline learning scheme (enclosed by a thick red
solid line in Fig. 1), training samples of synchronized
body volumes and their poses are obtained. The sam-
ple volume is reconstructed by a slow but sophisticated
algorithm[4, 28, 29] that produces few errors. That is, the
sample volumes are not visual hulls but correctly recon-
structed volumes. We call them refined volumes. The vol-
ume model is, therefore, invariant to the geometric config-
uration between the target person and cameras unlike the
visual hull. Learning not the visual hulls but the refined
volumes has one more advantage; in the visual hulls, the
difference between the shapes might be buried in the phan-
tom volumes. For efficient and robust features extracted
from the volume, we improves a 3D model proposed in
[24, 18]. We call this model a volume descriptor (de-
scribed in Sec. 4), which is designed to fit our volume track-
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Figure 1. Algorithm overview. Each of dashed lines encloses the contents described in each section.

ing scheme. From the volume descriptors of all the sample
refined volumes, their probabilistic dynamical model in a
lower-dimensional latent space (as shown in “Volume la-
tent space X in Fig. 1) is acquired by Gaussian Process
Dynamical Models[15] (GPDM) as shown in “GPDM opti-
mization” in Fig. 1 (described in Sec. 5). With this model,
bidirectional mappings between the observation space, Y,
and the latent space, X, are obtained (denoted by f(x) for
X — Y and f~!(y) for Y — X in Fig. 1, respectively).
The pose space is also modeled as a lower-dimensional la-
tent space. Finally, the mapping from the volume latent
space to the pose latent space is learned using RVM[31].

Our online pose tracking scheme (enclosed by a thick
blue solid line in Fig. 1) consists of volume tracking (de-
scribed in Sec. 6) and pose regression from the volume (de-
scribed in Sec. 7). In volume tracking, particle filtering in
X is achieved. Each particle corresponds to a refined vol-
ume descriptor in X. At each frame, an input visual hull
(“Input visual hull” shown in the top right in Fig. 1) is re-
constructed by SFS and converted to its volume descriptor
(“1. Visual hull descriptor” in Fig. 1). In a simple im-
plementation of particle filtering, the visual hull descriptor
is mapped by f~1(y) into X and then the likelihood be-
tween each particle and the mapped visual hull descriptor is
evaluated. This comparison is, however, irrelevant because
the particle is computed from the refined volumes while the
input is computed from the visual hull. This problem did
not emerge in previous works because loose-fitting cloth-
ing, which makes phantom volumes, was not used. In the

3D real-world space, the refined volume must be geomet-
rically encapsulated in the visual hull. We call this con-
straint the visual hull constraint, which is crucial in our
pose tracking. To evaluate the visual hull constraint, the in-
put visual hull is compared with the refined volumes in the
volume descriptor space (“Phantom volume comparison” in
Fig. 1), in which this constraint can be evaluated efficiently.
For that, each particle is mapped to Y (i.e., “2. Refined vol-
ume descriptor” in Fig. 1) by f(«). The input visual hull
modified by this comparison (i.e., “3. Estimated refined vol-
ume descriptor” in Fig. 1) is then mapped into X and then
compared with all the particles for computing their likeli-
hoods. Finally, the pose is estimated from the particles and
their likelihoods (i.e., the likelihood-weighted mean of the
particles) by regression learned using RVM.

4. Efficient Volume Descriptor

Our volume descriptor is a modified version of voxel
data description[24, 18]. In [24, 18], voxel data is divided
into several bins. In each bin, the number of the surface
voxels in the reconstructed volume is counted. The shape
of the bin model of our descriptor is a cylinder, whose cen-
ter is a reference axis (Fig.2). The median of all human
voxels is regarded as the reference axis. The size of the
cylinder in our experiments was as follows: height=1.23H
and radius = 0.6 H, where H is the body height of a sub-
ject, for normalizing the subjects’ heights. While the bin
model in [24] has height, radius, and azimuth divisions, our
bin model has only height and azimuth divisions. Instead
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Figure 2. Bin structure for our volume descriptor.

of radius division, our descriptor has not only the num-
ber of surface voxels but also their mean position (i.e., a
mean distance from the reference axis) in each bin. The
dimension of our descriptor with N} height divisions and
N, azimuth divisions is decreased to Nl, where NV, is ra-
dius divisions, of that in [24]. This efficient dimensional-
ity reduction improves GPDM optimization. This results in
high neighborhood-preserving property and invertibility of
the mapping functions (i.e., ¥y = f(z) and z = f~1(y)).
The former property is important for correct motion prior
in the latent space. The high invertibility is indispensable
for our visual hull constraint. The mean position along the
radius axis instead of the radius division is suitable also for
the visual hull constraint (see Sec. 6).

5. Volumetric Probabilistic Dynamical Model

GPDM[15] provides us two mappings, 1) from a point
att — 1 to a point at ¢ in the latent space and 2) from a la-
tent space to an observation space. In particular, the former
mapping is useful for volume tracking. These two mappings
are modeled as follows:

e = 3,0i0i(Ti-1) + Moy, (D
v = b)) + nuy, 2)
where v, is a D-dimensional volume descriptor at time ¢,

x; is its d-dimensional latent variable (d < D), ¢; and
1; are basis functions with weights A = [ai,...] and

B = [by,...], and ng ¢ and n,; are noise. Under the as-
sumption that the noise is zero-mean Gaussian, the follow-
ing likelihood for V' = [v1,--- ,vy] can be obtained by
marginalization of the basis functions in Formula (2):

_ 1 1 —1 T
p(VIX, H)f—ﬁﬁ)ND”KV”D exp(—ztr(K, VV7")), (3)

where N is the number of samples, X = [z 1, -, xy], and
Ky, in which K, ; = ky(x;, x;), is a kernel matrix with

Figure 3. Probabilistic dynamical model. Circles: samples, Ar-
rows: motion, Color: variance (blue(low) — red(high)).

hyperparameters 6. In our experiments, the nonlinear radial
basis function was used for the kernel function kv (x;, x; ).
Similarly, the likelihood for X = [z, -+, xx] can be ob-
tained from Formula (1):

p(L1) exp(—Ltr —1 3 T
Ven®™-0D K P p(—3r(K X X)), (4)

p(X0x)=

where X, = [x2,--- ,xn] and K x is a kernel matrix con-
structed from [z, - - - , & y_1] with hyperparameters 6 x .

Constructing a latent space with X requires optimization
of the hyperparameters 6 and 6 x for maximizing the joint
likelihood of Formulas (3) and (4). The latent space con-
structed from a sample volume sequence, which was used
in our experiments, is shown in Fig. 3. For visualization, its
dimension is set to three.

With the optimized latent space, the mean and variance
of v¢, py (x) and 0% (), and the mean of @+, px (x), can
be computed from x; as follows:

pv () po +VIKG k(2) = v, (5)
o (xe) = k(me,x) — k(ze) Ky k),  (6)
px(®i—1) = pp+ XEK k(xim1) = 2. (7)

wy (x) and px(x) are employed for a mapping function
from the volume space to the latent space (i.e., f(x) =
wy (x)) and a motion prior function from x;_; to x, re-
spectively.

A mapping function from the volume space to the latent
space (f~'(v) : V. — X) is not explicitly provided by
GPDM. It is, however, required for our visual hull constraint
in volume tracking. Back-constrained GPLVM[16] gives us
the mapping V' — X as well as the mapping X — V.
However, more constraints (i.e., variables) are needed in its
optimization, which is difficult to converge successfully. In
this work, the mapping V' — X is obtained by regression,
which is learned by multi-variate RVM[31].

6. Probabilistic Volume Tracking with Visual
Hull Constraint

For pose regression from a volume, the correct refined
volume is required. In our method, the volume is tracked
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in order to obtain the correct one without being disturbed
by phantom volumes of an input visual hull. To achieve
this tracking robustly and efficiently, particle filtering in the
volume latent space given by GPDM is executed (as shown
as “Particles” in “Volume latent space X in Fig. 1).

In addition, the visual hull constraint is used for com-
parison between an input visual hull and a refined volume
learned in the latent space. In principle, the refined vol-
ume is geometrically encapsulated in the visual hull. There-
fore, for matching between the visual hull and the refined
volume, 1) regions inside the refined volume and outside
the visual hull should be penalized (as depicted by arrows
“Penalty” in Fig. 4) and 2) regions inside the visual hull
and outside the refined volume are the potential regions of
phantom volumes (as “Carving” in Fig. 4).

However, our volume tracking is executed in the latent
space X, in which the visual hull constraint cannot be evalu-
ated. Each particle (denoted by ”|i € {1,--- , NP}, where
NP is the number of the particles) is, therefore, transformed
to its volume descriptor by mapping X — Y, f(x?) and
compared with the input visual hull descriptor (denoted by
v). To evaluate the visual hull constraint in the volume de-
scriptors, their mean positions of surface voxels in b-th bin
(denoted by r}jh for the visual hull descriptor and 7 for the
refined volume descriptor obtained from a particle, f(z?))
are compared with each other as follows:

1) Penalty The penalty P; of each particle is determined
from the distance between 77" and 77"

P o= S Nep(v) + Cv, (8)

where p(b) = max(r;? — r¥",0) and C? is a constant.

2) Carving The potential regions of phantom volumes in
b-th bin, where ;¥ < r,’jh, of v are carved so that r})’h
gets closer to ;. It is, however, dangerous to move r}jh to
r;? without taking into account the reliability of each vol-
ume (denoted by ¢(-)); this may produce over-carving with-
out paying attention to physical limitations (e.g., volume
conservation) and the probabilistic volume model (i.e., the

volume latent space X). Therefore, a carved r}jh (denoted
by 7¥") is obtained taking into account the reliabilities of
/71 (v) and ¥ in X, ¢(z), as follows:

Pt =gt = (gt =) (1 = e(f T ())e(l)  (9)
cx) = exp(—op(z)/w), (10)

where oy () denotes the variance of @« (obtained by For-
mula (6)) in the latent space, w is a weight variable, which
might have different values for ¢(f ~*(v)) and ¥ Note that
the latent variable of the input visual hull, f ~!(v), which
is not illustrated in Fig. 1 for simplification, must com-
puted for getting its variance in the latent space, namely
co(fH(v)).

With the visual hull constraint, our volume tracking at
each frame is designed as follows:

1. A visual hull is reconstructed by SFS.

2. The reliability of i-th particle, c¢(x?), is computed by
Formula (10). All particles are then mapped to their
volume descriptors, f(x?), by Formula (5).

3. An input visual hull must match with f(z?), whose
shape is similar to that of the input but its azimuth
orientation differs from that of the input. For this
matching, 1) the input visual hull is rotated by 6, 2)
its volume descriptor v is computed, and 3) the ori-
entation of the input, 0, is estimated by finding 6,
which maximizes the following weighted-sum of the
normalized cross-correlation between v? and f(x?):

P 'Uef(l'f)
2. o) T

4. The input visual hull rotated by 6 is converted to its

volume descriptor, v?,

5. With comparison with f(z?), v? is carved by Formula

(9) and its penalty is computed by Formula (8). The
carved v? is then mapped to the latent space.

6. Let xf denote the latent variable of v? carved by
f(x?). The likelihood of ¢ for f(x!) is expressed

(2
9 2
(_M)C(w’?ﬂ?fl, where v is a

as follows: exp )P

weight variable that determines the weight of ||z¢ —
|| in the likelihood computation.

7. The mean of all particles, each of which is weighted
by its likelihood, is regarded as the latent variable of

the current volume.

8. All particles are shifted temporally with Formula (7).
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7. Pose Regression from the Estimated Volume

Figure 5 shows the overview of pose regression from the
refined volume estimated by volume tracking. In the learn-
ing process, the eigenspace is generated from all samples of
joint angles, which are obtained in synchronization with the
sample volumes. This eigenspace is regarded as the pose
latent space. Then pose regression learning is achieved by
multivariate RVM[31]. In the pose estimation processing,
the latent variable of a pose is regressed from the estimated
refine volume (“Estimated refined volume” in Fig. 5). Fi-
nally, the current pose is estimated from the latent variable
by inverse mapping of pose dimensionality reduction.

8. Experiments

We conducted experiments with general tight-fitting and
loose-fitting clothing (shown in Fig. 8). A subject wearing
each clothing moved while 8 roof-mounted synchronized
cameras captured the subject at 30 fps (1024 x 768 pixels).
Three kinds of motions were selected: dance, exercise, and
(simple) walking.Note that our method can learn any kind
of clothing and motion. Subjects wore tight-fitting clothing
in exercise sequences while they wore loose-fitting cloth-
ing in other sequences. The reconstruction voxel size was
10*mm. For obtaining pose data, IGS-190[21] was used.
The subject put it on under clothing. With this MoCap, 54
dimensional pose data (i.e., 18 3-DOF joints) was obtained
in synchronization with the images.

In learning processing, a volume was reconstructed at
each frame by SFS and mesh deformation[29] and then
converted to its volume descriptor, whose dimension was
2 x 16 (azimuth divisions) x5 (height divisions) = 160-
D. For each kind of motion, 300 training frames were used
for preparing a volume latent space, whose dimension was
empirically determined to be 6, by using GPDM[15]. For
comparative experiments, another volume latent space was
also generated from the same sample volumes using PCA.
The dimension of a pose latent space was determined so that
its cumulative percentage was over 0.95: 4-D for all kinds
of the motions.

With the motion prior obtained from one subject, each of
the five methods below was applied to all test sequences of
five subjects, each of which consisted of 300 frames:

Table 1. RMS errors (degrees) of estimated joint angles.

8 cameras
Dance | Exercise | Walking

MI. Direct detection 6.13 10.21 8.52
M2. D with PCA 6.34 12.77 7.45
M3. D with GPDM 5.81 7.69 6.90
M4. T with GPDM 5.39 6.46 5.09
MS5. Proposed method || 5.04 5.03 3.77

4 cameras
MI1. Direct detection 13.77 13.81 11.34
M2. D with PCA 14.71 16.7 8.64
M3. D with GPDM 6.73 8.03 8.42
M4. T with GPDM 6.37 6.46 6.27
MS5. Proposed method || 5.59 5.54 491

— :
~ = = Direct detection K |
— — — PCA detection o | A
1
1

25k GPDM detection I' i
GPDM tracking o
Proposed method I

Dance Exercise Walking
Figure 7. Tracking results in the latent space that is 3D for visu-
alization (green: sample refined volumes, blue: input visual hulls,
red: our tracking results). Left: dancel, Right: dance2.

M1. Direct detection The pose is regressed from the input
visual hull without via their latent spaces.

M2/M3. Detection with PCA/GPDM The input visual
hull was mapped to the volume latent space, generated
by PCA/GPDM, and it was used for pose regression.

M4. Tracking with GPDM This was same as the pro-
posed method, except without the visual hull con-

straint.

MS. Proposed method 256 particles were used. The
weight variables for particle likelihood computation
were v = (0.07 and w = 1 for a particle and w = 10

for an input visual hull.
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Figure 8. Visualization of the results of the proposed method (dance, exercise, and walking).

Table 1 shows the mean (over all joints, all frames, and
all subjects) of the RMS errors of estimated joint angles.
The groundtruth was obtained by MoCap. For each se-
quence, evaluations with 4 and 8 cameras were conducted.
Figure 6 shows the temporal histories of the RMS errors of
all the joints in a dance sequence. From these results, we
can make the following observations:

e Nonlinear embedding is superior to linear embedding
and without embedding.

e Tracking with motion prior is superior to frame-
independent regression.

e The visual hull constraint can improve accuracy, es-
pecially in 4 cameras, which produce larger visual
hulls than 8 cameras. Errors in exercise sequences,
in which tight-fitting clothing was observed, were also
suppressed by the constraint. Note that, in these se-
quences also, the complex poses of a subject made
large phantom volumes.

Figure 7 shows the histories of the following three latent
variables visualized in a 3D space: sample refined volumes,
input visual hulls, and estimated refined volumes acquired
by our proposed method. Several examples of joint angles
estimated by the proposed method and the method without
tracking and the proposed constraints (i.e., M3) are shown
in Fig. 8 and 9, respectively.

The proposed method ran at around 3 fps. Although it
is much faster (more than 1000 times faster) than existing
methods[9, 10] that estimate a human body under clothing,
it might not be enough for online applications. The most
time-consuming process was the mapping between the vol-
ume descriptor and its latent variable. Since this mapping

Figure 9. Incorrect pose estimation results by detection with
GPDM (i.e., M3). Left: dance (different arm directions), Right:
exercise (upside down arms).

is indispensable for our visual hull constraint, speeding up
this mapping is one of the important future challenges (e.g.,
sparse samples[32]).

9. Concluding Remarks

Our pose estimation method is based on pose regression
from the visual hull, which is significantly faster than other
pose estimation methods under clothing[9, 10]. The pro-
posed volume descriptor can represent the spatio-temporal
variation of the volumes efficiently. The novel visual hull
constraint with the volume descriptor can improve match-
ing between the input visual hull and the training refined
volumes. This geometric constraint in the observation vol-
ume space is integrated with the motion dynamics modeled
in the latent space obtained by GPDM. As the result, our
method can cope with complex non-rigid shape variations
of clothing that hides a human body.

Future work includes improving the visual hull con-
straint by 1) more precise mapping between the latent
spaces and 2) more detailed comparison between the visual
hull and the refined volume. One disadvantage of a MoCap
using sensors (e.g., accelerometers) is that it cannot implant
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the estimated joint angles into the reconstructed volume be-
cause the geometric relationship (i.e., relative positions) be-
tween the volume and the joint angles measured by sensors
is not obtained in the training period. To solve this prob-
lem, the geometric relationship can be acquired from the
3D positions of some sensors observable from the cameras.
Otherwise, the overlap between the skeleton and the recon-
structed volume might be able to be determined based on
several characteristic body features (e.g., head, face) both
in the training and online processing periods.

The GPDM code and the deformable mesh software
were provided by courtesy of Neil Lawrence and Shohei
Nobuhara, respectively. We also would like to thank No-
riaki Ichida for extensive experiments. Our deepest thanks
are extended to Takeo Kanade for useful comments.
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