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Abstract. We propose a real-time method for simultaneously refining
the reconstructed volume of a human body with loose-fitting clothing and
identifying body-parts in it. Time-series volumes, which are acquired by
a slow but sophisticated 3D reconstruction algorithm, with body-part la-
bels are obtained offline. The time-series sample volumes are represented
by trajectories in the eigenspaces using PCA. An input visual hull recon-
structed online is projected into the eigenspace and compared with the
trajectories in order to find similar high-precision samples with body-
part labels. The hierarchical search taking into account 3D reconstruc-
tion errors can achieve robust and fast matching. Experimental results
demonstrate that our method can refine the input visual hull including
loose-fitting clothing and identify its body-parts in real time.

1 Introduction

Using human motion information, a number of real-world applications can be
realized; for example, gesture-based interface, man-machine interaction, and CG
animation and computer-supported study of sports/expertises. For acquiring
that information, body-part identification (i.e., posture estimation) is an essential
technique. Such techniques have been proposed in many studies [1].

In a method based on 2D information obtained by a single camera, human
posture is estimated by fitting an approximate human-body model into a human
region in an image. The estimation result is, however, not robust to occlusions.

To improve the robustness to occlusions, 3D volume reconstruction from mul-
tiple views is effective. A reconstructed volume is useful not only for posture
estimation but also for 3D shape analysis. Although 3D reconstruction requires
a computational cost in general, Shape-From-Silhouette (SFS) can provide the
volume (i.e., visual hull) of a moving person stably in real time [2,3]. Online
applications using 3D shape and posture are, therefore, feasible by speeding up
3D posture estimation following 3D reconstruction.

In most methods based on a 3D volume, as with those based on a 2D image,
the posture is estimated so that the overlapping region between the reconstructed
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volume and the 3D human model that consists of simple rigid parts (e.g., cylin-
ders) is maximized (see [4,5], for example). The body parts (e.g., torso and
arms) can be given manually or detected from time-series reconstructed volumes
by extracting sub-volumes, each of whose motion is regarded as a rigid motion
(see [6,7], for example). All of these methods can work well under the assumption
that each body part can be approximately modeled as a rigid part. Approxima-
tion errors can be reduced by using a precise human-model obtained by a 3D
scanner and by estimating the shape deformation around a joint [8]. In [9], the
regions of bending limbs can be identified in the reconstructed volume without
the assumption of rigidity. Even with these methods, it is impossible to represent
a large variation of the shape of fully non-rigid loose-fitting clothing.

Although the shapes/motions of clothing are modeled and simulated in several
applications (e.g., CG [10] and non-rigid tracking [11]), it is impossible to esti-
mate the shapes/motions without information about human motion. In [12], the
shapes of a skirt and legs in it are reconstructed simultaneously using a clothing
model. Although this method might be most successful, the observed target is
simple (i.e., simple deformation without occlusions) and the computational cost
is very expensive (5min/frame). As far as we know, no existing algorithm can
simultaneously achieve shape reconstruction and posture estimation of a human
body with loose-fitting clothing in complex motion in real-time.

In addition to this essential problem, the previous methods tend to fail due to
3D reconstruction errors. Especially using SFS, ghost volumes must be included
in concave areas of a human body even if the pre-processes (e.g., camera cal-
ibration and silhouette extraction) are achieved without any error. The ghost
volumes and other reconstructed errors can be refined based on post-processes
such as multi-view photo consistencies (e.g., space curving [13]) and additional
restrictions such as silhouette consistencies and temporal smoothness (e.g., de-
formable mesh model [14]). Similar sophisticated algorithms allow us to fulfill
photo consistencies of a textureless object [15] and to deform a visual hull with
silhouette consistencies and estimated surface normals using a template human
model [16,17]. Even occluded clothes can be reconstructed using color markers
printed on a surface and hole filling [18,19]. None of these methods, however,
can achieve real-time 3D reconstruction of a surface with arbitrary texture.

Based on the above discussions, we propose a method for analyzing the shape
of a human body in loose-fitting clothing, which has the properties below: (1)
real-time processable for online applications, (2) identifying body parts with
significantly deformable clothing, and (3) refining the volume with arbitrary
textures. With our body-part identification, each voxel in the reconstructed vol-
ume including clothing is classified into a body-part label. The result does not
show the joint positions/angles (i.e., posture) but enables robust posture es-
timation using existing methods and their extension to posture estimation of
a body wearing loose-fitting clothing; each joint must be in the boundary of
body parts estimated by our method. The purpose of our volume refinement is
to fill and remove significant errors due to the failure in silhouette extraction
and SFS.
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2 Basic Schemes for Analyzing Loose-Fitting Clothing

In many methods for body-part identification and posture estimation, knowl-
edge about the human body is useful for improving accuracy and robustness.
In recent years, several methods learn and employ observed human motions as
training samples (e.g., the movable range of each joint angle [20] and the proba-
bilistic representation of each joint motion [21,22]). The example-based approach
is superior to a parametric representation in terms of correctly representing com-
plicated and small variations of the posture and motion.

In most of the previous example-based methods, the motion data is expressed
by a set of joint angles obtained by using a Motion Capture system with markers.
Using the real data obtained by MoCap is superior to using CG samples [23]
in terms of reality. For our purposes, however, the following problems arise in
using MoCap: (1) when a person wears loose-fitting clothes, the joint positions
cannot be measured because the markers on the clothes cannot stay in their
corresponding joints, and (2) total shape information cannot be obtained because
only the 3D positions of the markers are measured. Even with a number of
markers attached on the surface of a target [24], detailed shape analysis is difficult
because of interpolation among the markers and large holes caused by occlusions.

To realize our objectives while keeping the advantages of the example-based
methods (i.e., reality), therefore, we employ the following training samples:

– The time-series reliable volumes of a human body wearing clothing; the
reliable volumes are reconstructed with less errors by employing a slow but
sophisticated method such as [13,14].

– The body-part labels of each voxel in the total shape (i.e., volume).

These allow us to have the following advantages: (1) learning without any marker
that prevents free motions of a body and clothing and (2) analyzing not sparse
points on the surface of a body but its volume.

In our training scheme, the body-part label in each voxel is obtained from a
reconstructed sample volume wearing clothes in which each body part is colored
with a different color. In online analysis, the sample volumes with the labels are
compared with an input volume (i.e., visual hull) reconstructed online in order
to find similar samples. Using PCA, all the volumes are analyzed in a lower-
dimension eigenspace for quick search; (1) the input visual hull is projected into
the eigenspace in order to find samples similar to it, and then (2) the reliable part-
labels are acquired from the samples. Although a distinctive 3D shape descriptor
(e.g., [25]) is effective for similarity retrieval, it needs more computational cost. In
this work, therefore, characteristic features are extracted from the reconstructed
volume with PCA for real-time search.

In this paper, one of the following 10 part-labels is allocated to each voxel
in a human body; head, torso, right upper-arm, right forearm, left upper-arm,
left forearm, right thigh, right lower-leg, left thigh, and left lower-leg labels. In
addition, a special label non-object is prepared in order to be allocated to ghost
volumes. By allocating these 11 labels to the input visual hull, body-part labeling
and volume refinement are realized simultaneously.
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Time-series sample volumes of each sequence are represented by a trajectory
in the eigenspace as with a manifold in the parametric eigenspace method [26].
In terms of dealing with 3D volumes, our problem has the following distinctive
difficulties:

Huge dimensions. The voxels in a human volume is numerous. Since dimen-
sion reduction using PCA is insufficient for real-time processing, dual hier-
archical searches in the eigenspace are implemented (Sec 3.3 and 4.3).

Difference between an input visual hull and samples. While a sample
volume is refined, an input visual hull may include large amounts of ghost
volumes. A matching scheme robust to this difference is required (Sec. 4.2).

3 Time-Series Volume Learning

3.1 Generating Reliable Volumes with Part-Labels

The visual hull of a human body with part-colored clothing (Figure 1 (a)) is
reconstructed by SFS. Ghost volumes and other errors are then refined using the
deformable mesh model [14] as shown in Figure 1 (b) in order to approximate the
real volume for preparing samples. Next, the part-labeled image (Figure 1 (c)) is
generated by color detection. The colors of the part-labeled images are projected
onto the refined volume from multiple viewpoints in order to allocate one of the
part-labels to each surface voxel. The inside voxels are labeled by finding the
nearest surface voxel. Finally, the reliable volume with the part-labels can be
acquired as shown in Figure 1 (d).

3.2 Volume Learning Based on PCA

For PCA, the dimensions of the volume (i.e., the number of voxels) in all frames
must be identical. Therefore, the voxels in a fixed-size 3D bounding box, which
is defined so that its centroid coincides with that of the volume in each frame,
are extracted. The size of the bounding box is determined so that it can cover
the whole-body in respective frames.

(b) Reliable 3D volume

(a) Observed image

(c) Part-labeled image

(d) Part-labeled reliable 3D volume

Fig. 1. Process flow for generating reliable volumes with part-labels.
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Let vt = (vt,1, vt,2, · · · , vt,d)T (vt,i ∈ {0, 1}, where 0 and 1 denote non-object
and body voxels, respectively) be d-dimensional voxels observed at time t (i.e.,
Fig. 1 (b)). If T sample volumes are observed in total, a matrix consisting
of the sample volumes is expressed by V = (v1 − m, v2 − m, · · · , vT − m) ,
where m denotes the average of T volumes. The covariance matrix of the sam-
ple volumes, S = V V T , is computed in order to acquire a set of eigenvectors,
{ei|i ∈ {1, · · · , d}} (in ascending order), of S. With the first k (<< d) eigenvec-
tors, a d-dimensional volume vt can be approximated by a smaller dimensional
vector as follows: vt is transformed to yt in the k-dimensional eigenspace by the
following linear projection using a matrix E = (e1, · · · , ek) consisting of the k
eigenvectors:

yt = ET (vt − m) (1)

By concatenating the projected volumes of each observed sequence in order of
observed time, time-series volume variations can be represented by a trajectory.

Let {yL
1 , · · · , yL

T } be samples projected into the eigenspace. Each projected
point in a trajectory has its original volume with the part-labels (i.e., Fig. 1 (d)).
Figure 2 shows examples of the trajectory and the volumes with the part-labels.
From the figure, it can be confirmed that similar volumes are located nearby.

3.3 Hierarchical Volume Learning

The detailed shape of a target is lost in significantly lowered dimensions. In our
method, for real-time search while retaining the detailed shape, the volume is
analyzed in two stages, namely low-resolution whole-body and high-resolution
body-part analyses. After identifying the rough locations of body parts in the
whole-body analysis, the detailed shape is acquired in the high-resolution anal-
ysis of each body-part. For the hierarchical analysis, the processes mentioned in
Sec. 3.2 (i.e., division into bounding boxes and dimension decreasing based on
PCA) are applied not only to a whole-body volume but also to all high-resolution
body parts. Consequently, 11 eigenspaces (i.e., a whole-body + 10 body parts)
are generated in total. Examples of the bounding boxes are shown in Figure 3.
Note that a bounding box may partially overlap other bounding boxes.

Trajectory (3D)Volume data

Volume data

Volume data

Part-labeled data

e
3

e
2

e
1

Fig. 2. Trajectory with part-labels in a
(3D) eigenspace

(a) Whole body (b) Body parts

Fig. 3. Bounding boxes
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4 Shape Analysis: Part-Labeling and Volume Refinement

Figure 4 illustrates the process flow of online shape analysis. Each number in the
figure indicates the section that introduces the corresponding process in detail.

Reconstructing 3D volume

High-resolution volumeLow-resolution volume

Projecting the volume into the 

sample space

1. Object orientation

Volume refinement & Part labeling

Part-labeled reliable high-resolution volume

Searching for similar sample data

Projecting the volume into the 

sample space

Searching for a similar sample data

Dividing the body volume into parts

Label-probability of each voxel

Rotating the volume

Computing voxel reliabilities

Sec. 4.2

Sec. 4.4 Sec. 4.5

Sec. 4.6

2. Part-labeled regions

Sec. 

4.3

Fig. 4. Process flow of shape analysis

4.1 Search from Time-Series Sample Volumes

In this Section 4.1, the outline of a search algorithm that is employed both for
whole-body and body-parts analyses is described.

Time-series volumes at the current frame and n previous frames are pro-
jected into the eigenspace using Formula (1). Let Y I

t = (yI
t−n, yI

t−n+1, · · · , yI
t ),

where yI
t denotes the projected point of the input visual hull at t, be the input

trajectory in the eigenspace. By comparing the input trajectory Y I
t and sub-

trajectories Y L
s = (yL

s−n, yL
s−n+1, · · · , yL

s ) (where s ∈ {n + 1, · · · , T }) of the
trajectory consisting of sample volumes, sample trajectories similar to the input
one are searched for. In general, as the number of the previous frames (i.e., n)
increases, the stability of the search improves. The increase in n, on the other
hand, causes the problems below:

– The search speed gets slow.
– Since a sample sequence must coincide with the input sequence for a long

time, a partially-matched sample sequence (i.e., a sequence similar to the
input sequence for a short time) is ignored.

Therefore, n should be determined in accordance not only with search stability
but also with processing time and applicability to recognizing the combination of
the short-period motions, depending on an application; n = 5 in our experiments.

For search in the eigenspace, the summation of the distances between corre-
sponding points of the input and sample sequences is evaluated as the similarity
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between them. Practically, yL
s in Y L

s that leads the following minimum summa-
tion Dt is considered to be most similar to the input yI

t :

Dt =
T

min
s=n+1

0∑

i=−n

‖ yL
s+i − yI

t+i ‖, (2)

where ‖ · ‖ denotes the norm of a vector.
If a selected sample shows the shape/posture of an online observed person

correctly, the reliable volume with part-labels can be obtained from the selected
sample. It is, however, difficult to find such a sample because the input visual
hull may include many errors while all the sample volumes are refined to be
without errors. Furthermore, the processing time increases in proportion to the
number of samples if all the samples are compared with the input visual hull.
To cope with these problems, the following is achieved in our method:

Voxel Reliability. The occurrence probability of the ghost volume in each
voxel is evaluated. We call this probability voxel reliability.

Efficient Search. The nearest neighbor of the input visual hull is found from
a small number of samples based on hierarchical groups of all samples.

In what follows, these solutions for the ghost volumes and the processing time
are introduced in Sections 4.2 and 4.3, respectively, and then the procedures of
our online shape analysis is described in practical order.

4.2 Ghost Volume Suppression Using the Voxel Reliability in
Search

It is hard to predict from observed images where 3D reconstruction errors due to
the failure in silhouette extraction occur. This is because the difficulty in silhou-
ette extraction changes depending not only on a target but also on a background
scene and image noises. On the other hand, ghost volumes generated due to SFS
occur in concave areas of a target. That is, the voxel reliability can be analyzed
only in accordance with the shape of the target.

The voxel reliability is given to each voxel in all sample volumes. The voxel
reliabilities in each refined sample volume can be estimated by comparing it
with “its visual hulls with ghost volumes reconstructed by SFS”. Note that the
ghost volumes change depending not only on the shape of the volume but also
on the geometric configuration among the target and the cameras. Although
it is very troublesome and difficult to obtain the visual hulls in various po-
sitions/orientations of the target in real observations, the visual hulls can be
virtually produced from the refined sample volume as follows:

1. Assume that the extrinsic parameters of real cameras have achieved. The
projective silhouette of a sample volume, which is virtually located in visual
fields of the cameras, is obtained in each camera.

2. The visual hull is computed from the obtained silhouettes using SFS. In each
voxel, the difference between the sample volume and the computed visual
hull means a ghost volume.
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3. Steps 1 and 2 are executed while changing the location/rotation of the sample
volume in order to obtain a number of the visual hulls.

4. In each voxel of the visual hulls, the number of the ghost volumes is counted
and its rate (denoted by rt,v) is computed by rt,v = 1

Nvar

∑Nvar

i δi
t,v, where

– Nvar denotes the number of observations in the virtual 3D space and
– δi

t,v outputs 0 if the reconstructed results of v-th voxel in t-th vol-
ume are different between the original reliable volume and i-th posi-
tions/orientations in the virtual 3D space, otherwise 1.

rt,v is the voxel reliability of v-th voxel in t-th sample volume.
5. The voxel reliability corresponding to the reliable t-th volume (denoted by

Rt) is expressed by the following matrix: Rt = diag (rt,1, · · · , rt,d).
6. 1, 2, 3, 4, and 5 are executed for every sample volume for acquiring the voxel

reliabilities in all sample volume.

With the following projection formula given by applying the voxel reliability
to Formula 1, the projected point of an input visual hull, vI

t , observed at t
(denoted by ŷI

t ) is obtained: ŷI
t = ET Rt

(
vI

t − m
)
. Using ŷI

t , adverse effects
of ghost volumes in search can be reduced. To estimate the voxel reliability Rt,
however, the sample corresponding to the input visual hull vI

t is required. This is
the chicken-and-egg problem. Under the assumption that the difference between
subsequent volumes is very small, the voxel reliability at t is estimated based on
the sample selected at t − 1.

4.3 Efficient Search from Time-Series Sample Volumes

For speeding up search in the eigenspace, the likelihood expressed by Formula
2 should be evaluated for a small number of samples near an input projected
point. To determine the limited samples, therefore, the eigenspace is divided into
several sub-regions and the samples in each sub-region is counted in advance.

In online search, the sub-region SRP including the input projected point P
is first selected. The similar samples are then found from the samples in SRP .
Figure 5 illustrates examples. As a sub-region becomes smaller as shown in
Figure 5 (a), the number of selected samples decreases. However, SRP may have
no sample as shown in (a). To cope with this problem, larger sub-regions are
searched following a small sub-region (shown in Figure 5 (b)).

e
1

e
2

e
1

e
2

PP

SR
P

SR
P

(a) m-divided space
(b) n-divided space
(n < m)

Fig. 5. Efficient hierarchical search

True nearest neighbor point

P

NSR1 NSR2 NSR3

NSR5

NSR8
NSR7NSR6

NSR4

d2

dp

d4

d1

Additional neighbor sub-regions

Nearest 

neighbor 

point

e
1

e
2

e
1

e
2

SR
P

(a) Search failure
(b) Search-regions
expansion

Fig. 6. Additional search regions
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However, the true nearest neighbor (indicated by “True nearest neighbor
point” in Figure 6 (a)) may exist in a sub-region other than SRP . Let (1) NSRi

be one of the sub-regions neighboring SRP and (2) di and dp be the distances
from P to NSRi and the nearest neighbor in SRP , respectively, as illustrated
in Figure 6 (b). To always find the true nearest neighbor, the neighboring sub-
regions, each of which satisfies di < dp, are also searched.

With the above mentioned search algorithm, both high-speed capability and
search stability for always finding the nearest neighbor can be attained.

4.4 Rough Shape Analysis of the Low-Resolution Whole-Body

In what follows, the procedures using the above mentioned functions are de-
scribed in practical order.

A low-resolution volume reconstructed online is projected into the eigenspace
in order to estimate the following two information:

Target orientation. Each volume is reconstructed in the world coordinate sys-
tem. That is, even if the shapes/postures of a person are identical, the recon-
structed volumes of the different orientations are different. The orientations
of the volumes must be, therefore, aligned.

Body-parts regions. In order to compare the samples of each high-resolution
body-part with the region of this body-part in an input visual hull, this
region must be identified in the input.

This information is estimated as follows:

1. The centroid of the input visual hull is estimated.
2. The input visual hull is rotated θ along the vertical axis through the centroid.
3. The volume inside the bounding box, whose size is identical to the size of

the whole-body in sample training, is projected into the eigenspace of the
whole-body. n previous volumes are also projected.

4. With Dt in Formula (2), the sample nearest the projected point is selected.
5. Steps 2, 3, and 4 are repeated while changing θ.
6. The orientation of the input visual hull (denoted by θ́) is determined so that

Dt with regard to θ́ is minimum. The input visual hull is then rotated θ́
and the sample volume corresponding to the minimum Dt is selected as the
nearest neighbor.

7. The bounding box including each body part in the input visual hull is ac-
quired by overlapping the selected sample volume with its body-part labels
and their bounding boxes.

4.5 Detailed Shape Analysis of the High-Resolution Body-Parts

The volume inside the bounding box of each body part is then analyzed in
order to estimate the label probabilities in the high-resolution volume. The label
probabilities in each voxel mean how appropriate 11 labels, including non-object,
are to the label of this voxel.
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1. An input high-resolution visual hull is rotated θ́ and then divided into the
regions of its body parts.

2. The volume inside each bounding box is projected into the corresponding
eigenspace. n previous volumes are also projected. The following steps are
executed for each body-part.

3. Dt in Formula (2) is evaluated. Samples, each of whose Dt is less than a
predefined threshold, are selected.

4. Let Ndata be the number of the selected samples. The likelihood of the
selected sample d (denoted by Ld

t , where d ∈ {1, · · · , Ndata}) is the inverse
of Dt of d. With this likelihood, the probability of l-th part label in v-th voxel
(denoted by P v,l) is defined by P v,l =

∑Ndata

d=1
Ld

t

St
εd
v,l, where St =

∑Ndata

d=1 Ld
t

and εd
v,l outputs 1 if the part-label of v-th voxel in d is l, otherwise 0.

4.6 Part-Labeling and Volume Refinement

By integrating the label probabilities estimated in all bounding boxes, the high-
resolution whole-body volume with the label probabilities is generated. Note
that several bounding boxes overlap with each other. In such an overlapping
region, the label probabilities in the same voxel may be different among different
bounding boxes. The average of the label probabilities with regard to each body-
part label (i.e., 1

Npart

∑Npart

p=1 P p,v,l, where Npart denotes the number of physical
body parts, namely 10 in our method, and P p,v,l denotes P v,l in body-part p) is
given to a voxel. In addition, spatially neighboring voxels should have the same
label because each body part must be one cluster. For harmonization among
the neighboring voxels, therefore, the weighted average of the label probabilities
in Nnv × Nnv × Nnv neighboring voxels (denoted byP̂ v,l) is then computed in
each voxel: P̂ v,l = 1

PN3
nv

i=1 wi

∑N3
nv

i=1 wiP̄
i,l, where wi denotes the distance between

v and its neighboring voxel i. In our experiments, Nnv = 3. Finally, in each
voxel in the whole body, the label with the maximum label probability P̂ v,l is
considered to be the body-part label.

5 Experiments

We conducted experiments with loose-fitting 10-colored clothing as shown in
Figure 1 (a). A person wearing this clothing danced while seven synchronized
cameras captured this person at 30 fps (1024 × 768 pixels).

5000 frames were captured for training samples. All the sample images were
prepared with one subject. With these images, the time-series volumes of the
whole-body were reconstructed. The voxel sizes in low and high resolution vol-
umes were 60mm3 and 20mm3, respectively. While the voxel dimension of a
low-resolution volume was always 23 × 11 × 31 = 8743, those of high-resolution
volumes were changed depending on the body part (between 7479 and 26825).
The dimension number of each eigenspace is determined based on the cumula-
tive contribution rate. In our experiments, the dimension number, which allows
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#50 #150 #200#100 #250

Fig. 7. Experimental results (1st-row: Observed images, 2nd-row: Input
low(left)/high(right)-resolution visual hulls, 3rd-row: Shape-analysis results).

us to analyze the human volumes with satisfactory accuracy, was empirically
determined so that the cumulative contribution rate was 75%, which is obtained
using 44 eigenvectors in the whole-body volumes, for example.

Using these samples recorded in the eigenspaces, shape analysis was con-
ducted. For input image sequences, two subjects were observed separately; one
(155 cm) was the person who was captured for the samples. Since their heights
were different (155cm and 175cm), the reconstructed volumes of the other were
normalized based on the ratio between their heights. They wore the same-shape
clothing as that used for the samples, and performed the same dance as the
samples. Partial results were shown in Figure 7. An example of shape refinement
is shown in Figure 8. This result demonstrates that ghost volumes generated by
being surrounded with two arms could be removed. An example of the results
for the other subject is shown in Figure 9. It can be confirmed that the volume
could be refined even if the input visual hull was corrupted due to the failure of
silhouette extraction as indicated by red circles.

We also conducted experiments using tight clothes under the same condition
as that of the above experiments; samples with the tight clothes were prepared.
An example of the results is shown in Figure 10. It can be confirmed that our
method is also effective for this kind of common clothing.

The processing time using a PC with an Opteron 1.8GHz was 24 fps. Although
this is a little slower than the video rate (30fps), a moving person can be observed
as shown in the results.

As explained above, we can confirm that our proposed method almost satisfies
our purposes introduced at the end of Section 1, namely real-time processing,
body-part identification, and volume refinement.

For quantitative evaluation, the following two volumes that were acquired by
observing colored clothing used for the samples were compared:

True volume. Volumes reconstructed by the method for obtaining samples by
using color information.

Result. Volumes acquired without color information by the proposed method.
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Table 1. Error analysis: The percentages of false-positive (FP) and false-negative (FN)
voxels in proportion to the size of each body-part are shown

Same subject Another subject Tight clothing
Part FP(%) FN(%) FP(%) FN(%) FP(%) FN(%)

head 7.2 5.2 7.9 5.7 4.7 5.8

torso 3.9 3.1 5.2 5.8 3.2 3.2

right upper-arm 9.9 6.4 9.1 8.1 4.9 5.6

right forearm 11.4 10.8 13.2 12.2 7.2 6.0

left upper-arm 6.5 11.1 10.1 9.6 4.0 3.6

left forearm 9.5 10.0 14.8 11.0 8.3 7.1

right thigh 5.1 7.1 6.4 4.4 4.8 5.1

right lower-leg 11.8 8.7 11.6 9.4 9.5 7.6

left thigh 3.3 6.3 7.7 5.1 6.8 6.5

left lower-leg 7.5 6.4 12.9 8.1 11.4 9.7

Original Refined Original Refined

Fig. 8. Volume refinement results shown
from two viewpoints

Fig. 9. Results in the other subject

Fig. 10. Results in another dance

Observed image Input volume data Result

Error1

Error2

Fig. 11. Wrong labeling results

Table 1 shows the results; errors were increased due to the following factors:

– Subject change between training and analysis; errors in ”Another subject”
were worse than those in ”Same subject”.

– Non-rigid motion of loose-fitting clothing; (1) errors in ”Tight clothing” were
smaller than those in other two results and (2) those in rigid body parts (e.g.,
head) were smaller than those in non-rigid parts (e.g., forearm).

Although shape analysis was almost successful in most frames, large errors in
body-part labeling were caused in a few frames. In an example shown in Fig-
ure 11 (Error1), the right upper-arm label is allocated to a part of the right thigh.
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In analyzing high-resolution body parts, similar samples are searched for inde-
pendently in each body part. The independent search allows us to recognize a
variety of the shapes/postures of the whole-body, each of which is composed by
a combination of samples of the body-parts, even if those shapes/postures of the
whole body are not included in the samples. However, by simply integrating (i.e.,
averaging) all the body parts after the independent search, a combination error
such as an example in Figure 11 may occur. The consistent results should be
acquired by mutually exchanging the search results of the body parts, Further-
more, although our method strongly relies on search for similar samples, useful
restrictions about the shape/posture of a human body can improve the method
(e.g., “each body must be a cluster” and “the cubic content of each body part
should be almost constant”).

While a false-negative region in an input visual hull could be recovered in
the example shown in Figure 9, a true-positive region was sometimes removed
as shown in the example in Figure 11 (Error2). Such an error is caused due to
small differences between the input visual hull and samples. These errors are
inevitable when new people not included in the samples are observed. To cope
with this problem, a number of samples of the same motion should be used. For
using a large data set, powerful embedding [27] is useful because it can possibly
represent observed volumes well by probabilistic lower-resolution data that has
a beneficial effect on discrimination. Its capability also possibly can improve the
versatility of the method, which is one of critical limitations of our method;
how to generalize to new clothes and new motions. In principle, to recognize
them, corresponding volumes have to be in samples. This results in increasing
the samples. Therefore, powerful embedding [27] is crucial for the versatility.

6 Concluding Remarks

We proposed an online method for simultaneously refining the reconstructed
volume of a human body wearing loose-fitting clothing and identifying body
parts in it. In our method, reliable and high-precision time-series volumes with
body-part labels are learned in advance. Each volume reconstructed online is
compared with these reliable volumes in order to find similar reliable data with
body-part labels. The voxel reliability plays a crucial role for matching robust to
ghost volumes. Applying PCA to the volumes and hierarchical and coarse-to-fine
analyses allow us to speed up and stabilize the search procedure.

This study was supported by National Project on Development of High Fi-
delity Digitization Software for Large-Scale and Intangible Cultural Assets.
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